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Influenza viruses cause annually recurrent respiratory dis-
ease in humans with significant impact on human health as
well as on economy. Although influenza B viruses are almost
exclusively found in humans, influenza A viruses (IAVs)
circulate in the human population as an annually recurring
epidemic disease, and emerge from a huge zoonotic reservoir.
Characterized by their ability to rapidly acquire adaptive
mutations in a process called antigenic drift, IAV gradually
evade the human immune response.1,2 Additionally, the
special arrangement of viral genetic information on multiple
RNA segments allows for mixing genetic information of
different IAV strains giving rise to novel, gene-reassorted
virus strains, a process called antigenic shift that periodically
results in emergence of virus strains with largely altered

characteristics and the ability to infect immunologically naive
humans with increased pathogenicity during pandemic out-
breaks. In this regard, special concern is raised toward
zoonotic viruses circulating in birds as well as in swine
populations that display high mortality rates when intro-
duced into the human host. So far, these viruses, H7N9 or
H5N1 “bird flu” viruses, only have a low replicative potential
in humans and rarely transmit between humans,3,4 but are
feared to adapt to highly efficient human-to-human trans-
mission and are therefore closely monitored. Although influ-
enza viruses usually cause moderate respiratory illness,
infection of the lower respiratory tract of humans can result
in pneumonia with progression to acute respiratory distress
syndrome (ARDS), and death from respiratory failure.
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Abstract Seasonal and pandemic influenza are the two faces of respiratory infections caused by
influenza viruses in humans. As seasonal influenza occurs on an annual basis, the
circulating virus strains are closely monitored and a yearly updated vaccination is
provided, especially to identified risk populations. Nonetheless, influenza virus infection
may result in pneumonia and acute respiratory failure, frequently complicated by
bacterial coinfection. Pandemics are, in contrary, unexpected rare events related to the
emergence of a reassorted human-pathogenic influenza A virus (IAV) strains that often
causes increased morbidity and spreads extremely rapidly in the immunologically naive
human population, with huge clinical and economic impact. Accordingly, particular
efforts are made to advance our knowledge on the disease biology and pathology and
recent studies have brought new insights into IAV adaptationmechanisms to the human
host, as well as into the key players in disease pathogenesis on the host side. Current
antiviral strategies are only efficient at the early stages of the disease and are challenged
by the genomic instability of the virus, highlighting the need for novel antiviral therapies
targeting the pulmonary host response to improve viral clearance, reduce the risk of
bacterial coinfection, and prevent or attenuate acute lung injury. This review article
summarizes our current knowledge on the molecular basis of influenza infection and
disease progression, the key players in pathogenesis driving severe disease and
progression to lung failure, as well as available and envisioned prevention and treatment
strategies against influenza virus infection.
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Influenza-mediated damage to the alveolar epithelium re-
sults from both intrinsic viral pathogenicity attributable to its
tropism to alveolar epithelial cells and a robust host immune
response, which, although contributing to viral clearance, can
worsen the severity of lung injury. Therefore, IAVs pose a
substantial threat to global human health and are closely
monitored to record local influenza activity to design annual
vaccines and to counteract outbreaks of novel strains which
have acquired the ability to cross species barriers to infect
humans. Besides existing strategies including vaccination and
antiviral therapy, showing variable efficacy due to antigenic
variation and the occurrence of resistant virus variants, novel
approaches have been recently developed to treat influenza
virus–induced lung injury by targeting an unbalanced host
immune response in addition to antivirals.

In this review, we discuss features and origin of seasonal
and pandemic influenza, focused on IAV, its clinical presen-
tation, and current as well as possible future intervention
strategies.

Seasonal and Pandemic Influenza

Two different genera of the virus family Orthomyxoviridae,
influenza A and B, can cause a contagious respiratory disease
in humans. They cause annual epidemics of varying severity,
including mild common cold symptoms to severe lung injury
with fatal outcome. IAVs, on which we focus in this review,
show a very wide variety and thus are further subgrouped by
the antigenic properties of their surface proteins hemagglu-
tinin (HA) and neuraminidase (NA). Besides the well-defined
strains circulating in humans (of the subgroups H1N1 and
H3N2), IAVs are present in a large number of mammalian
species, poultry, and particularlywild birds,with currently 18
or 11 variants known for HA or NA, respectively, where the
recently discovered bat-isolates H17/18 and N10/11 seem to
be quite distinct from avian and mammalian strains.5,6

Influenza virus epidemics usually occur during the cold
season in temperate regions (Northern hemisphere: De-
cember to April; Southern hemisphere: June to September)
when low humidity and temperature ambient conditions
are suggested to prolong virus shedding and transmission.7

In subtropical and tropical regions, influenza seasons are
less clearly defined, allowing recurrent infections all over
the year. Thus—and due to other reasons such as close
proximity to domestic poultry—it has been proposed that
the Asian continent represents a particular “reservoir” for
not only endemic human but also zoonotic influenza virus
strains.8,9 Overall, seasonal IAV affects up to 10% of the
adult population and 20% of children annually10 and dis-
plays a substantial morbidity. A cohort study estimates that
between 2003 and 2009 in the United States, seasonal
influenza was responsible for 3.8% of all admissions for
respiratory failure and evaluates the incidence of influen-
za-associated acute respiratory failure at 2.7 per 100,000
persons per year.11 This results in considerable clinical and
economic burden. For the United States, direct medical
costs covering health care for influenza-induced illness as
well as economic losses due to lost working days and

declined production are proposed to account for at least
26 billion USD annually.12

Compared with the seasonal influenza, pandemics have
occurred every 20 to 30 years and are generally associated
with more severe symptoms which also affect a healthy
young population and potentially lead to increased mortality
rates.13–17 Pandemic IAV strains are newly introduced into an
immunologically naive human population and usually derive
from avian reservoirs and have reassorted in an intermediate
host such as swine, where they acquire further adaptive
mutations, enabling them to infect the human respiratory
tract and to effectively transmit from human to human,
causing a human disease18,19 (►Fig. 1).

Wild birds constitute a primary reservoir of influenza
viruses, but IAVs are also widely found in pigs. IAVs have
further been identified in other mammalian intermediate
hosts, especially aquatic mammals as elephant seals20 and
also in horses and recently in dogs.21 With respect to avian
influenza, the major threats for human health currently are
influenza A H5N1 and H7N922 widely found in domestic
farms and confirmed to induce severe disease in humans.22,23

Following a first poultry outbreak at the end of 2003 in
Thailand, until now more than 840 cases of human infection
with H5N1 have been reported from more than 15 coun-
tries24,25 with reported mortality rates of more than 50% and
an overall increased morbidity in children (<15 years)26;
since 2013, poultry-to-human transmission of H7N9 was
confirmed in more than 560 cases, leading to severe pneu-
monia with multiorgan failure and mortality rates of approx-
imately 40%.27,28 Interestingly, H7N9 is less pathogenic in
birds thanH5N1 but displays signatures of human adaptation,
as it presents with a better affinity for human than for avian
influenza receptors.29,30

As the swine respiratory tract expresses both avian and
human influenza receptors,31 pigs can act as “mixing vessels”
for the reassortment of IAV strains from different origins.32

The pandemic risk of triple reassortant strains of swine origin
has been confirmed during the 2009 “swine” pandemic,
where a triple (avian, swine, human) reassortant caused
the first pandemic of the 21th century.19

Influenza pandemics constitute a major threat to global
health, and emerging strains, in animal reservoirs aswell as in
the human population, are kept under tight surveillance by
the authorities. The World Health Organization (WHO) has
defined the progression of a pandemic into six stages, begin-
ning by the first animal infections in phase 1 to the outbreak
spreading over a large geographical zone in phase 6 (►Fig. 1),
to assess any newpandemic risk (WHOWeb site). The Centers
for Disease Control and Prevention (CDC) has described a new
influenza risk assessment framework (IRAT) to evaluate
qualitatively and quantitatively the potential of new strains
to give rise to pandemic events based onvirus properties, host
response of the human population, and the ecology and
epidemiology associated with the strain.33

Influenza pandemic episodes have been described since the
end of the 19th century and virus characteristics as well as
associated host responses vary from one pandemic to another.
The first, even if less documented, known pandemic was the
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1889 “Russian flu” (H3N8)34 followed by the 1918 “Spanish
flu” (H1N1), the “Asian flu” in 1957 (H2N2),35,36 the “Hong-
Kongflu” in 1968 (H3N2),37 andmost recently the2009 “swine
flu” (H1N1). Interestingly, the most well-known influenza
pandemic, the 1918 Spanish flu, and themost recent pandem-
ic, the swine influenza from 2009, were caused by an H1N1
virus. Also called “the mother of all pandemics” by Tauben-
berger and Morens, the 1918 virus infected around one-third
of theworld population andwas responsible for the death of at
least 50 million of people within a year, appearing in three
successive waves.38 Although the 1918 pandemic has been
extensively studied, the virus characteristics responsible for its
fast spread, associated with a high mortality rate especially in
the population of 20 to 40 years of age, largely remain
obscure.39 Yet, studies in mice have shown that the Spanish
strain induces a larger immune response, especially in terms of
macrophage and neutrophil recruitment, as low pathogenic
viruses.40

The 2009 “swine flu,” since then renamed as “novel
influenza A (H1N1)” or “pandemic 2009 H1N1 flu,” resulted
in 18,500 reported laboratory cases and a modeling study
estimates that, in total, the 2009 H1N1 virus caused more
than 200,000 influenza-associated deaths due to respiratory
and 80,000 deaths due to cardiovascular failure. Importantly,
more than 80% of these lethal cases affected a young popula-
tion (<65 years).41 Contrary to the 1918 virus, the 2009 strain

seems to be able to suppress the early innate host immune
response which may contribute to a high transmission rate
and pathogenicity.42

Viral Adaptations Needed for Host Switch
and Determinants of Pathogenicity

To successfully adapt to humans as a new host—either via the
direct transmission from birds to humans or a possible
further adaptation process in swine—IAVs need to ensure
efficient replication and interspecies transmission. Contrary
to birds, where IAV replicates in the gastrointestinal epithelia,
the primary target cells of IAV in humans as well as in pigs are
found in the epithelium of the respiratory tract. Consequent-
ly, a successful adaption to the human host requires muta-
tions in the viral replication machinery.

Thefirst step of IAV replication in thehumanhost is the cell
attachment, when the virion binds via the viral surface
protein HA to sialic acids (SAs) expressed on the upper or
lower airway or alveolar epithelial cell. While avian epithelia
highly express α2,3-linked SA, the α2,6-linked SA is predom-
inant in the human trachea. After attachment, virions enter
the endosomal pathway.43 Subsequently, an HA-induced
fusion of viral and endosomal membrane is followed by the
dissociation of the viral ribonucleoprotein complex (vRNP)
consisting of viral RNA, the polymerase complex (viral

Fig. 1 A schematic representation showing major events involved in emergence of an influenza pandemic, from the two major animal reservoirs
to the global outbreak in humans. Evolution steps of emerging strains are attentively followed by World Health Organization and classified into six
stages.
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proteins PA, PB1, and PB2), and the viral nucleoprotein (NP),
from the M1 protein.44 Interestingly, avian and mammalian
IAVs show different pH optima for this HA-mediated mem-
brane fusion, and the respective mutations in the HA protein
(amino acids N104D and T115I) havebeen associatedwith the
capacity to sufficiently release the viral genetic information
into the host cell.45,46 In the next step, the vRNP is trafficked
from the cytosol toward the nucleus. This import is mediated
by the cellular importin-α7 in the mammalian system and
importin-α3 in the avian host,47–49 and the switch in usage of
importin isoforms depends on both NP and PB2.49Within the
nucleus, the negative-oriented viral (v)RNA is transcribed
into messenger (m)RNA, giving rise to new viral proteins by
the cellular translation machinery, as well as positive-
oriented copy (c)RNA and high amounts of newly transcribed
negative-sense vRNA. Herein, the avian polymerase is
adapted toworking temperature of 41°C as found in the avian
gastrointestinal tract, whereas in human strains,mutations at
position 627 in the PB2 gene are thought to contribute to the
tolerance toward lower temperatures found in the human
lung.50 Virus assembly takes places at the apical cell mem-
brane, where viral proteins and newly formed RNPs accumu-
late at lipid raft domains, resulting in budding, scission, and
release of newly formed virions.51 During release, cleavage
from cell surface expressed SA by the viral NA is essential to
prevent clumping and retention of virions. NA has to switch
from cleaving α2,3- to α2,6-bound SA when introduced into
the human host.52,53 Furthermore, NA activity has been
shown to be temperature- as well as pH-dependent, and
multiple alterations promote optimal performance in the
human respiratory tract.53,54

Especially with regard to pandemic preparedness, an
important task is to evaluate the occurrence of virus variants
with increased pathogenicity. These IAV variants often show
enhanced replication properties or means of immune eva-
sion, some of which will be highlighted here (for a more
detailed review, see Baigent and McCauley53 as well as
Tscherne and García-Sastre55). Many mutations enhancing
replication efficiency can be found in the polymerase complex
(reviewed in Mänz et al56); most prominent is the E627K
substitution in the PB2 gene that is suggested to stabilize the
interaction with the NP, to enhance replication rates and to
induce higher pathogenicity in the 1918, 1957, and 1968
pandemic IAV.57,58 It is found in 32% of circulating H5N1
variants as well as H7N9 isolates.59–61 An important contrib-
utor to effective viral spread is the viral nonstructural NS1
protein that plays a major role in limiting the host innate
immune response.62,63 It prevents viral RNA recognition by
the innate system and thus blocks the production of antiviral
type I interferons (IFNs) by influenza-infected epithelial
cells.64 Additionally, NS1 inhibits downstream signaling of
protein kinase R (PKR), downregulates the IFN-receptor, and
deregulates processing of cellular mRNA.64 Viruses with
reduced or lacking NS1 activity are substantially compro-
mised in pathogenicity.65,66 Another major determinant of
influenza virus pathogenicity is the viral HA. Highly patho-
genic avian influenza (HPAI), in contrast to seasonal human
IAV and low pathogenic avian influenza strains, bear a multi-

basic amino acid motif in the HA cleavage site, which pro-
motes HA cleavage by a higher variety of proteases.3,67 HPAI-
induced disease is therefore related to increased disease
severity and higher mortality in humans.68,69 Additionally,
influenza strains newly introduced into the population gen-
erally show no or only one to two N-linked glycosylation site
(s) in the globular head domain of the HA, whereas seasonal
strains acquire more sites to mask their antigenic epito-
pes70,71; over the past 40 years, H3N2 has increased the
number of sites of glycosylation in parallel with its pathoge-
nicity decrease.72

The Host Response to Influenza—Key Players
in Antiviral Defense and in Driving Epithelial
Injury

In patients who succumb to IAV infection, lung autopsies
almost always show diffuse alveolar damage, but viral RNA is
present in only a subset of patients.73 These results and
findings from published studies of IAV infection in animals
suggest that mortality due to IAV infection may rather result
from an overly exaggerated immune response than from
uncontrolled viral spread. Several subsets of immune cells
were found to contribute to damaging host responses, and
some of the underlying molecular mechanisms have been
recently defined, providing novel targets for therapeutic
intervention64,74 (►Fig. 2).

As mentioned earlier, the primary target cells of IAVs are
the epithelial cells thatmount an anti-inflammatory response
upon recognition of pathogen-/danger-associated molecular
patterns (PAMPs/DAMPs) by diverse pattern recognition re-
ceptors. Viral uncapped 5′-triphosphorylated RNA interacts
with RIG-I (RNA helicases retinoic acid–inducible gene-I),
leading to a subsequent interaction with MAVS (mitochon-
dria-associated antiviral signaling protein), TRIM25 (tripar-
tite motif-containing protein 25), and IPS-1 (interferon-β–
promoter stimulator-1) and inducing IRF-3 and IRF-7 (inter-
feron regulatory factor)-dependent transcription and trans-
lation of types I and III IFNs.75,76 Additionally, recognition of
viral patterns by PKR activates NF-κB (nuclear factor “kappa-
light-chain enhancer” of activated B cells) translocation to the
nucleus and transcriptional activation of proinflammatory,
proapoptotic, and antiviral gene clusters.77–79 Other recep-
tors sensing IAV infection include the NLRP3 (NOD-like
receptor family, pyrin domain containing 3) inflammasome,
and also endosomal toll-like receptors (TLR3 and TLR7).80–82

Recent evidence suggests that upon viral infection, DAMPs
such as high-mobility group box 1 (HMGB1), S100A9, or
purine metabolites are crucially involved in influenza disease
progression.83,84

Similarly to epithelial cells, lung resident macrophages
represent a first line of defense and initiate an immune
response following viral pattern recognition. They phagocy-
tose viral particles as well as infected apoptotic cells and
represent a major source of type I IFNs and further cytokines
and chemokines.85,86 Thus, resident alveolar macrophages
have repeatedly been shown to be crucial for limiting viral
spread, morbidity, and mortality after influenza virus
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infection.87,88 At the same time, they initiate innate immune
responses as well as adaptive immunity by stimulation of
CD8þ T cells that may finally result in immune-related
pathologies. For example, oxidized phospholipids produced
upon IAV infection in a TLR4-dependent way have been
reported to potentiate macrophage cytokine production
and are crucially involved in the progression of IAV-induced
lung injury.89

Neutrophils are highly recruited early after IAV infection
into the alveoli and were found to play an ambivalent role in
IAV infection. On one hand, depletion of neutrophils early in
disease is associated with uncontrolled viral spread and
progression from mild to severe influenza-induced ill-
ness.88,90,91 On the other hand, excessive neutrophilic re-
cruitment, found in highly pathogenic H1N1 and H5N1
infections,40 contributes extensively to lung injury.92 Already
the intercellular migration process of neutrophils recruited
in large numbers from the blood vessel into the alveoli
requires a structural opening of epithelial junctional com-
plexes, contributing to alveolar barrier disintegration and
disease progression to ARDS.93 Furthermore, neutrophilic
release of various signaling molecules significantly contrib-
utes to lung injury, including further cytokines; extracellular
proteases; neutrophilic extracellular traps, of which espe-
cially histone components have been proven to be injurious
in IAV infection92,94; and reactive oxygen species.95 Besides
neutrophilic superoxide dismutase and NADPH oxidase,
myeloperoxidase also has been reported to significantly
affect the alveolar epithelial barrier integrity. In line, abro-
gation of CXCL2- or CXCL10-driven neutrophil recruitment

during IAV infection improves outcome in preclinical
models.96,97

Following establishment of a proinflammatory milieu in
the infected lung, circulating blood monocytes are recruited
to the alveolar lumen and differentiated tomonocyte-derived
alveolar macrophages and dendritic cells (DCs).98,99 The
former are, in contrast to the resident alveolar macrophages,
directly associated with enhanced severity of influenza-in-
duced injury.100,101 They release large amounts of proinflam-
matory as well as proapoptotic mediators. Among these,
especially the type I IFN-induced TRAIL (TNF-related apopto-
sis inducing ligand) has been shown to induce and sustain
collateral lung damage by induction of alveolar epithelial cell
apoptosis via its receptor DR5 (death receptor 5).102–105 Both
inhibition of the recruitment of monocyte-derived alveolar
macrophages and abrogation of TRAIL signaling have been
found to decrease influenza-induced lung injury, and recent
evidence reveals a role of TRAIL in inhibition of edema
resolution after IAV-induced lung injury in mice.102,103,106

DCs reside in the airway and alveolar epithelium, extend-
ing dendrites into the alveolar lumen and thus can be directly
infected or sense viral infection via antigen uptake from dying
cells. Especially the CD103þDC subset has been reported to be
the major subset migrating to the draining lymph nodes in
response to activating cytokines such as granulocyte-macro-
phage colony-stimulating factor (GM-CSF)107 and also in
response to NLRP3 inflammasome cytokines, interleukin
(IL)-1, and IL-18.108 Subsequently activated DC can cross-
present antigen to naive CD4þ and CD8þ T cells, thus priming
adaptive immune response.109 Interestingly, DC numbers are

Fig. 2 Key players in influenza A virus (IAV)-induced lung injury. While upper respiratory tract infection results in mild symptomatic IAV infection,
severe cases of IAV usually involve spread of the virus to the lower respiratory tract. Here, resident alveolar macrophages (AM) and dendritic cells
(DC) sense IAV infection of alveolar epithelial type I (AEC I) and type II (AEC II) cells. Cytokine release and establishment of a proinflammatory
milieu in the alveolar lumen lead to recruitment of additional monocyte-derived macrophages (MDM) as well as neutrophils from the blood vessels
to the site of infection. DC migration to the lymph nodes further induces generation of antigen-specific T cells into the vessel. An exuberant
immune response with massive release of proinflammatory and proapoptotic mediators contributes to IAV-induced lung injury.
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strongly increased in severe H5N1 infection in nonhuman
primates110 and DCs have been shown to secrete by them-
selves the NLRP3 inflammasome-dependent mediators IL-1β,
IL-1α, and IL-18.111,112 The T-cell–mediated adaptive immu-
nity to respiratory IAV infection is highly complex and
influenced by multiple signaling events derived from epithe-
lial cells, DC, and neutrophils.64 Activated CD8þ T cells
become cytotoxic effectors able to lyse IAV-antigen present-
ing infected epithelial cells, and they contribute to the induc-
tion of cell apoptosis by production of tumor necrosis factor-α
(TNFα) and TRAIL.113–115 Although specific removal of epi-
thelial infected cells by release of cytotoxic granules actively
participates to virus clearance, the nonspecific activity of
proinflammatory cytokines as TNFα, CCL3, and CCL5 released
by activated T cell can additionally impact on noninfected
epithelial cells and may thereby enhance lung inflammation
and injury.116

Additionally, the lung endothelial cells are also affected by
influenza virus infection and can impact on epithelial injury
in murine influenza models.117 They not onlymediatemono-
cyte and leukocyte lung intra- and extravasation by expres-
sion of adhesion molecules and chemokines such as E-
selectin, P-selectin, intercellular adhesion molecule-1 and
vascular cell adhesion molecule-1, CXCL9, and
CXCL10118,119 but also release inflammatory mediators
such as IL-6 and TNFα,120,121 further promoting the proin-
flammatory milieu during IAV infection. In contrary, endo-
thelial cells are a major source for angiotensin-converting
enzyme 2 (ACE2), which downregulates angiotensin 2, and
increased serum levels of ACE2 after IAV infection correlates
closely with epithelial cell protection and improved outcome
after human H5N1 and H7N9 infection.122,123 Another im-
portant endothelial signaling event orchestrating inflamma-
tory viral lung injury is the sphingosine 1 phosphate pathway.
Blockade of the endothelial-produced sphingosine-1-phos-
phate 1 (S1P1) results in decreased cytokine and chemokine
levels correlating with lower mortality rates in influenza-
induced lung injury.117,124

Clinical Presentation
Influenza viruses spread in the human population by respi-
ratory droplet transmission.125 Influenza infection can be an
asymptomatic or mild with an uncomplicated upper respira-
tory tract illness; in rare cases, however, IAV induces a
complicated disease with severe viral pneumonia leading to
multiorgan failure or exacerbation of underlying disease
conditions.126 Seasonal IAVs especially target populations
with immunodeficiencies or underlying chronic conditions,
such as lung or heart disease.127–130

Clinically, an acute onset of symptoms can be observed
after 24 to 48 hours of incubation time, correlating with
enhanced viral replication. These symptoms constitute the
influenza-like illness (ILI) and include headache, cough,
myalgias, malaise, chills, and fever that can persist for 2 to
8 days. Pandemic and in a less extent seasonal IAV has
furthermore been described to cause gastrointestinal illness
with vomiting or diarrhea, especially in children. Severe cases
of influenza infection comprise spread of the virus to the

alveolar compartment, where both α2,6- and α2,3-SA are
present—the latter highly expressed on type II pneumo-
cytes.131,132 Alveolar infection causes extensive diffuse alve-
olar damage, histologically resembling other forms of ARDS
with intra-alveolar hemorrhagic edema accumulation, fibrin
deposition,massive infiltration of leukocytes, extensive bron-
chial and alveolar epithelial cell apoptosis, and formation of
hyaline membranes.133 Such patients present with progres-
sive respiratory failure, including dyspnea, tachypnea, hyp-
oxia, and radiological signs of diffuse bilateral pneumonia,
and later on ARDSwith possible fatal outcome.134 Frequently,
coinfection with colonizing bacteria aggravates the course of
illness. Coinfections with Streptococcus pneumoniae and
Staphylococcus aureus are the most frequent and have been
observed at a high rate during pandemics leading to an
increase in pneumonia-associated death.135 The autopsy of
68 soldiers who died during the Spanish flu wave revealed
evidence of bacterial pneumonia in the lung inmost cases.39A
cohort studies in 14 Australian ICUs demonstrated that
during the 2009 influenza season, coinfections were domi-
nant in a previously healthy younger population without
comorbidities.136 Coinfection with further respiratory virus-
es such as respiratory syncytial virus aggravates the severity
of the disease,137 especially in immunocompromised
patients.138

Intervention Strategies

Treatment for typical ILI is generally supportive. One major
challenge in the treatment of influenza virus infection is early
detection, as influenza-specific antiviral therapy is most
effective in the beginning of the disease. As first symptoms
are not specifically attributable to IAV but more generally to
respiratory viral infection, rapid ELISA-based antigen tests
eventually combined with PCR-based diagnostics tests are
recommended—especially during the influenza season—to
allow a fast differentiation from other causes and rapid onset
of antiviral treatment. However,WHOguidelines recommend
to provide initial treatment against influenza without await-
ing delayed laboratory test results.126

Currently used antivirals in clinical trials are summarized
in ►Table 1. The primary antiviral and empiric treatment for
mild as well as severe influenza A and B virus infections is
administration of the NA inhibitors, recommended by the
WHO to be applied as early as possible in all high-risk patients
(immunocompromised, severe comorbidities, underlying
chronic lung disease, age < 2 or > 65 years, morbid obesity,
nursing home residents, women who are pregnant or post-
partum), and in all patients with signs of severe respiratory
disease. Randomized clinical trials have confirmed the effi-
cacy of NA inhibitors to diminish symptom duration and risk
of pneumonia complications139 and length of treatment or
dose may be increased in immunocompromised patients.
Currently, all circulating A and B strains are susceptible to
approved NA inhibitors; however, previously circulating
H1N1 IAV strains have beenwidely resistant to oseltamivir.140

A way to overcome viral resistance may be to combine
antiviral drugs with different modes of action in future,141
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and to additionally target host cellular pathways known to be
indispensable for viral replication at the virus–host interface.

For patients presenting with influenza-associated respira-
tory failure, NA treatment is highly recommended and was
found to be effective in terms of outcome even when applied
later than 48 hours post–symptom onset. NA inhibitors are
frequently applied through the intravenous route in critical
care patients.142 Complementary to antivirals, supportive
treatment is necessary.143 These measures include standard
care for ARDS,144,145 and extracorporal membrane oxygen-
ation protocols were found to be beneficial,146 whereas
treatment by anti-inflammatory strategies such as systemic
corticosteroid treatment is not recommended to date.147,148

As bacterial coinfections constitute a major complication
which increases the severity of the disease and worsens
outcome, patients with influenza-associated ARDS should
be carefully monitored to start empiric antibiotic treatment
as early as possible. Jain et al suggested that patients hospi-
talized with suspected influenza and lung infiltrates on chest
radiography should receive early and aggressive treatment
with both antibiotics and influenza antiviral agents.149

At-Risk Populations

Influenza especially targets humans with altered immune
responses and is generally associated with a U-shaped mor-
tality curve, except for both 191838 and 2009 pandemics
which displayW-shape curves.150 Thismeans that high death
rates are observed in children younger than 2 years and

elderly persons older than 65 years in seasonal influenza
infections, whereas young adults show high mortality rates
during pandemics, where the elderly may be protected to
some extent due to preexisting immunity. Additional risk
factors or comorbidities enhancing the likeliness to develop
severe influenza-induced complications comprise age, chron-
ic respiratory, renal, hematologic, neurologic or cardiovascu-
lar disease, diabetes, obesity, immunosuppression/-
deficiency, and pregnancy/postpartum period as many clini-
cal studies on hospitalized 2009 influenza have demonstrat-
ed.128–130,151–153 A global pooled analysis on 70,000
hospitalized 2009 influenza patients indicate that children
(<15 years) present a higher risk of being admitted to
hospital, whereas older adults (>50 years) display higher
mortality rates. Furthermore, morbid obesity seems to be
associated with the risk of ICU hospitalization and lethal
outcome.130 Immunocompromised persons suffer from a
more severe disease and are more likely to develop drug-
resistance mutations.154,155 Numerous clinical studies espe-
cially on 2009 pandemic cases156,157 and WHO or CDC
recommendations158,159 identify pregnancy as comorbidity
factor for influenza and advise general vaccination of this risk
population. Pregnant women are more susceptible for infec-
tionwith influenza, develop a more severe disease associated
with worse pregnancy outcomes, and show higher risk of ICU
admission and increasedmortality. Biological reasons for this
predisposition are not yet defined, but changes in immune
responses, particularly in antiviral responses,160 associated
with pregnancy are involved and the fetus-associated

Table 1 Current antiviral drugs and novel antivirals in clinical trials

Name Trademark Status Mechanism of inhibition Comments

Amantadine Symmetrel FDA approved (1966) Steric inhibition of M2 ion conductance Not recommended due to high
prevalence of resistant variants

Rimantadine Flumadine FDA approved (1994) Steric inhibition of M2 ion conductance Not recommended due to high
prevalence of resistant variants

Oseltamivir Tamiflu FDA approved (1999) Binding to enzymatic active site of NA Approved for patients
�2 wk and older, orally

Zanamivir Relenza FDA approved (1999) Binding to enzymatic active site of NA Approved for patients
�5 y and older, per inhalation

Peramivir Rapivab,
Rapiacta

FDA approved (2014) Binding to enzymatic active site of NA Approved for patients �18 y
and older, intravenously

Laninamivir Inavir Approved
(Japan, 2010)

Binding to enzymatic active site of NA Approved for treatment
(2010) and prevention (2013),
per inhalation

AVI-7100 Phase I Interference with expression of viral
M gene segment

DAS181-F03 Phase I Cleavage of sialic acids from
host cell surface

Flufirvitide Phase I Peptide inhibitor binding thus
blocking viral HA

Favipiravir Phase III Nucleoside inhibitor targeting PB1

Nitazoxanide Phase III Blockade of HA maturation

Abbreviations: FDA, Food and Drug Administration; HA, hemagglutinin; NA, neuraminidase.
Information used from: www.cdc.gov; www.fda.gov; www.clinicaltrials.gov (September 2015).

Seminars in Respiratory and Critical Care Medicine Vol. 37 No. 4/2016

Human Influenza Virus Infections Peteranderl et al. 493

T
hi

s 
do

cu
m

en
t w

as
 d

ow
nl

oa
de

d 
fo

r 
pe

rs
on

al
 u

se
 o

nl
y.

 U
na

ut
ho

riz
ed

 d
is

tr
ib

ut
io

n 
is

 s
tr

ic
tly

 p
ro

hi
bi

te
d.

http://www.cdc.gov


complications are probably essentially due to maternal fe-
ver.161 As well as maternal protection, vaccination also pro-
tects newborns and infants, another risk population, for
which vaccination is recommended from 6 months of age
in the United States and in the European Union (EU), with the
latter mostly limited to infants with increased risk of
exposure.162

Importantly, with respect to development of personalized
therapies, recent studies havehighlighted a link between host
genetic predisposition and susceptibility to influenza viruses.
Albright and colleagues have observed a hereditary contribu-
tion in lethal cases of influenza in Utah.163 As IFN-dependent
proteins and cytokines are known to be important for host
defense against viruses, genome-wide association studies
(GWAS) have focused on association between specific poly-
morphisms and susceptibility to influenza. The IFN-inducible
transmembrane protein 3 (IFITM3) plays clearly an important
role in host defense against H1N1164 and H7N9,165 but the
association between its single-nucleotide polymorphism
rs12252 and influenza susceptibility remains a matter of
controversy.166,167 Recently, deficiency in IRF7 has been
associated with a severe case of influenza infection.168 Mu-
tations in the IL1A and IL1B genes (coding for interleukins 1-α
and -β), in the genes encoding the protease TMPRSS2 (trans-
membrane protease, serin 2, mediating viral HA cleavage
upon infection), or galectin-1169–171 can furthermore impact
the host susceptibility to H1N1 or H7N9.

Vaccination

Considering the aforementioned obstacles present for effi-
cient and timely treatment of severe influenza infections,
preventive vaccination is a key tool to diminish influenza
morbidity as well as socioeconomic burden.172 Even if na-
tional guidelines for influenza virus vaccination vary, vacci-
nation is generally recommended not only to high-risk
patients with preexisting comorbidities or high risk of expo-
sure but also to the whole population (6 months of age or
older) to not only limit the individual risk of infection but also
to improveherd immunity and the likeliness for reassortment
events.173 As influenza virus strains gradually change be-
tween seasons, the composition of the vaccine is updated
yearly based on recommendations of the WHO that monitors
the global influenza virus occurrence. The currently approved
vaccinations are either based on egg- or cell culture–grown
inactivated subunit vaccines that are administered intramus-
cularly, or live, attenuated influenza viruses that are used for
intranasal administration in children in the United States and
Europe.174 The inactivated trivalent or quadrivalent vaccina-
tion preparations contain antigens of two IAV strains (cur-
rently a descendant of the pandemic H1N1 and a circulating
H3N2 strain) and of one or two influenza B virus strains
(Yamagata and Victoria line), respectively, and mainly trigger
an immunoglobulin G (IgG) serum response.175 This IgG-
mediated protection can be suboptimal especially in cases of
strong divergence between the antigens used for vaccination
and those of the currently circulating seasonal influenza
strains, when prediction is suboptimal. To minimize reduced

efficacy, efforts are taken to develop vaccines that elicit cross
protection against several strains and are directed against a
conserved HA stem region.176–178 Live, attenuated vaccine
strains are usually generated on an H2N2 backbone and
reassorted with the WHO-recommended strains to carry
the current HA and NA genetic information and surface
protein expression adapted to growth at 25°C, thus limiting
spread in the human host.179 They elicit a stronger immune
response including IgG and IgA production as well as T-cell
memory, but are considered less safe, as they bear the
potential risk of reversion to a nonattenuated form and a
possible reassortment platform for circulating virus stains.180

Therefore, efforts are made to improve safety of live, attenu-
ated vaccines, for example, by engineering variants unable to
circumvent the antiviral IFN response by deleting or inserting
a truncated NS1 protein.174

Novel Therapeutic Approaches

In the light of the growing prevalence of drug-resistant IAV
strains, substantial efforts are taken to establish new strate-
gies to limit viral replication and improve outcomes of IAV
infection, some of which are currently tested for human
application in clinical trials (►Table 1). One class of drugs
comprises classical antiviral agents, directly targeting viral
proteins and their function. Neutralizing antibodies against
both the HA and the M2 are tested that are active against a
broader range of influenza strains.181,182 The viral HA is
further targeted by decoy receptors or SA-containing inhib-
itors as well as carbohydrate-binding drugs, which block the
HA by binding to its glycosylation sites and thus prevent cell
adsorption (i.e., cyanovirin-N 56).183 Favipiravir is a nucleo-
side inhibitor currently evaluated in phase III trials that blocks
the activity of the viral polymerase complex and revealed
very limited development of resistant IAV.184,185 Moreover,
classical SA synthetic analogues that act similarly as oselta-
mivir and zanamivir have been developed resulting in admis-
sion of laninamivir and peramivir recently.186–188 Other
strategies to directly target viral components include the
use of small interfering RNA189,190 and small molecule in-
hibitors.191 Moreover, combination therapies using different
antiviral drugs are currently studied in detail and have shown
efficacy in limiting IAV replication.

Another class of novel antiviral drugs influences host cell
proteins or signaling pathways necessary for viral infection or
replication. DAS181 (Fludase) abrogates HA adsorption to the
host cell by cleavage of SA from thehost cell surface.192–194HA
is further targeted by agents preventing correct posttransla-
tional processing of the transmembrane protein (Nitazoxa-
nide), as well as by blocking cleavage of HA by the internal
proteases HAT and TMPRSS2 (Aprotinin).192,195 Another ap-
proach is the inhibition of the transcription factor NF-κB that
has been proven to be activated upon influenza infection and
to be supportive for virus replication.196 Given that NF-κB
inhibition resulted in reduced viral replication, less inflam-
mation, and improved outcome in preclinical models, an
inhaled compound, L-lysine acetylsalicylate glycine (LASAG),
has been tested in phase II trials.197Other strategies interrupt
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virus replication through specific modulation of lipid raft
domains (Viperin),198 the MAP kinase pathway, pyridine
metabolism, protectin D expression, and even IFN modula-
tion,191,199 where the latter is either enhanced early in IAV
infection or suppressed by neutralizing antibodies late in
disease progression.200 Further strategies are aimed to mod-
ulate an unbalanced, overshooting inflammatory response
during virus-induced lung injury, to promote pulmonary host
defense and to drive repair of the damaged epithelium after
virus clearance. GM-CSF is an important modulator of mac-
rophage and DC-mediated antiviral immunity, and also plays
amajor role in the repair of the alveolar epithelium.201–203 As
such, we suggested that local administration of GM-CSF to
patients with pneumonia- and IAV-induced ARDS will im-
prove host defense, oxygenation, and outcome,204 and a
placebo-controlled, double-blind, randomized multicenter
phase II trial on inhaled GM-CSF for treatment of ARDS
induced by bacterial or viral pneumonia has been launched.
Such host-modulating therapies are envisioned to be com-
bined with antivirals in future to improve outcome of influ-
enza-induced respiratory failure.141

Finally, future therapeutic options are stem cell–based
approaches. Interestingly, preclinical studies have shown
the beneficial effects of the application of bone marrow–

derived mesenchymal stromal cells (MSCs) which possess
immunomodulatory and regenerative properties205 for the
treatment of acute lung injury,206 and MSCs are currently
tested as therapy for human ARDS.207 Even if the potential of
MSC has not been studied in preclinical models of influenza
pneumonia so far, cell therapy—applied either systemically or
locally into the injured lung—may constitute an innovative
approach to treat IAV-induced ARDS patients.208 Moreover,
endogenous epithelial stem/progenitor cells in the murine
lunghavebeen recently defined andwere found to repopulate
distal lung epithelium and therefore to actively participate to
the repair phase after influenza-induced injury through
activation of a p63/krt5 regeneration program.209,210 Our
own data reveal that these regeneration pathways are in-
duced and particularlymodulated by influenzaviruses during
infection of the stem cell niche211, highlighting endogenous
stem cells and their mediators as novel putative targets to
improve lung regeneration after severe viral damage.

Conclusion

Taken together, IAV-induced lung injury still shows a major
impact on human health, but substantial work is invested in
the monitoring and the prevention of IAV-induced disease as
well as in promising concepts to improve outcomes of IAV-
induced ARDS. A key challenge in influenza research is to
design innovative host-based therapies able to boost antiviral
immunity and to improve lung regeneration. Translational
approaches should be focused on better understanding of
viral–host interactions as well as immunopathogenic mech-
anisms to define signaling pathways on a molecular basis
amenable to specific targeting. Meanwhile, defining host
susceptibility factors will accelerate recognition and treat-
ment of a new category of risk patients and also promote the

discovery of novel strategies for personalized therapies. It will
also be necessary to understand the mechanisms underlying
the increased susceptibility to bacterial outgrowth associated
with influenza infection, to reduce the prevalence of second-
ary infections with increased morbidities. Finally, ongoing
research on stem cell–based therapies, including injury- or
pathogen-specific programming of these cells prior to appli-
cation to improve their particular modes of action in different
forms of acute lung injury, reveals promising results which
will likely be the basic of future therapies against ARDS.
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